Preliminary communication

ISOCYANO AND PHOSPHINE COMPLEXES DERIVED BY LIGAND DISPLACEMENT FROM NICKEL(IV), COBALT(IV) AND IRON(IV) TRIS-(DITHIOCARBAMATES)

A.K.M. GROVES, N.J. MORRISON and J.A. McCLEVERTY* Chemistry Department, The University, Sheffield S3 7HF (Great Britain) (Received November 7th, 1974)

Summary

 $[\operatorname{Ni}(S_2 \operatorname{CNR}_2)_3]^+ (R = \text{Et or n-Bu}) \text{ reacts with } \operatorname{CNR'}(R' = \text{t-Bu or } p-\operatorname{ClC}_6 \widetilde{H}_4), \\ \operatorname{PMePh}_2 \text{ or } \operatorname{Ph}_2\operatorname{PCH}_2\operatorname{CH}_2\operatorname{PPh}_2 \text{ (diphos) giving } [\operatorname{Ni}L_2(S_2 \operatorname{CNR}_2)]^- (L = \text{Lewis base}) \\ \operatorname{or } [\operatorname{Ni}(\operatorname{diphos})(S_2 \operatorname{CNR}_2)]^+, \text{ and with } \operatorname{PPh}_3 \text{ giving } \operatorname{Ni}(S_2 \operatorname{CNR}_2)_2, \operatorname{Ph}_3\operatorname{PS}, [\operatorname{Ph}_3\operatorname{PC-} (=S)\operatorname{NR}_2]^+ \text{ and some } [\operatorname{Ni}(\operatorname{PPh}_3)_2(S_2 \operatorname{CNR}_2)]^+; [\operatorname{M}(S_2 \operatorname{CNR}_2)_3]^+ (M = \text{Co or Fe}) \\ \operatorname{reacts with } \operatorname{CNR'} \text{ or diphos giving } [\operatorname{M}(\operatorname{CNR'})_4(S_2 \operatorname{CNR}_2)]^+ (M = \operatorname{Fe}) \text{ or } [\operatorname{M}(\operatorname{diphos}) - (S_2 \operatorname{CNR}_2)_2]^+, \text{ and with } \operatorname{PPh}_3 \text{ giving } \operatorname{M}(S_2 \operatorname{CNR}_2)_3, \operatorname{Ph}_3\operatorname{PS} \text{ and } [\operatorname{Ph}_3\operatorname{P}(=S)\operatorname{NR}_2]^+, \\ \operatorname{while } \operatorname{Fe}(S_2 \operatorname{CNR}_2)_3 \text{ reacts with } \operatorname{CNR'} \text{ giving } \operatorname{Fe}(\operatorname{CNR'})_2(S_2 \operatorname{CNR}_2)_2. \\ \end{array}$

Oxidation of Ni(S_2CNR_2)₂ with bromine [1, 2] and of M(S_2CNR_2)₃ with BF₃ [2, 3] or BF₃ ·OEt₂ affords [Ni(S_2CNR_2)₃]Br and [M(S_2CNR_2)₃][BF₄] [3], respectively. The nickel complex has a distorted octahedral geometry, but there is no evidence of inter-ligand S-S bonding in the solid state or solution [2], unlike the situation in highly oxidised dithiolene complexes [4]. Spectrophotometric studies revealed that photochemical bleaching in coordinating solvents, and reactions with Lewis bases, lead to the formation of thiuramdisulphides ($\{S_2CNR_2\}_2$) and uncharacterised nickel(II) products. Believing that the last could be the species [$L_2Ni(S_2CNR_2)$]⁺, we have studied this internal redox behaviour by attempting to isolate the products, and have compared the results with those obtained from the related tris(dithiocarbamato)-iron and -cobalt cations.

Treatment of $[Ni(S_2CNR_2)_3][PF_6]$ (R = Et or n-Bu) with CNR' (R' = t-Bu or p-ClC₆H₄) afforded the new nickel(II) isocyanide complexes, $[Ni(CNR')_2 - (S_2CNR_2)][PF_6]$ and $\{S_2CNR_2\}_2$ in very high yields. With Ph₂PCH₂GH₂PPh₂ (diphos) and PMePh₂, the yields of $[Ni(diphos)(S_2CNR_2)]^+$ and $[Ni(PMePh_2)_2 - (S_2CNR_2)]^+$, were lower, whereas PPh₃ reacted to give a new type of phosphonium cation, viz. $[Ph_3PC(=S)NR_2]^+$, together with Ph₃PS and Ni(S₂CNR₂)₂. However, $[Ni(PPh_3)_2(S_2CNR_2)]^+$, isolable in very low yield from this reaction, could be an intermediate since it was shown to react with $\{S_2CNR_2\}_2$ to form the three major products.

 $[Fe(S_2CNR_2)_3]^+$ reacted with the isonitriles affording $[Fe(CNR')_4(S_2CNR_2)]^+$ (with loss of $\{S_2CNR_2\}_2$) while $Fe(S_2CNEt_2)_3$ gave, unexpectedly, the stereochemically rigid *cis*-Fe(CNR')_2(S_2CNEt_2)_2. With diphos, $[M(S_2CNR_2)_3]^+$ (M = Fe or Co) afforded $[M(diphos)(S_2CNR_2)_2]^+$ while PPh₃ produced, inter alia, Ph₃PS, $[Ph_3PC(=S)NR_2]^+$ and $M(S_2CNR_2)_3$.

While the nickel(II) complexes had no significant redox properties, the iron compounds exhibited reversible electron transfer behaviour (cyclic voltammetry at room temperature in CH_2Cl_2 using a platinum electrode). Thus evidence for the existence of $[Fe(CNR')_4(S_2CNEt_2)]^{2+}$, $[Fe(CNR')_2(S_2CNEt_2)_2]^+$, $[Fe(diphos)-(S_2CNEt_2)_2]^0$ and $[Fe(diphos)(S_2CNEt_2)_2]^{2+}$ was obtained; the neutral diphos complex was obtained independently by reaction of that ligand with $Fe(S_2CNEt_2)_2$.

Acknowledgement

We thank Monsanto Ltd. for financial assistance, and Dr. P.D. Frisch for making the electrochemical measurements.

References

- 1 H.C. Brinkhoff, J.A. Cras, J.J. Steggerda and J. Willemse, Rec. Trav. Chim. Pays Bas, 88 (1969) 633.
- 2 J.P. Fackler, Jr., A. Ardeef and R.G. Fischer, Jr., J. Amer. Chem. Soc., 95 (1973) 774.
- 3 E.A. Paselt and D.K. Straub, Inorg. Chem., 11 (1972) 259; L.R. Gahan and M.J. O'Connor, J. Chem. Soc. Chem. Commun., (1974) 68.
- 4 J.A. McCleverty, Progr. Inorg. Chem., 10 (1968) 49; R. Eisenberg, ibid., 12 (1970) 295.